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Nonlinear evolution of a pair of oblique 
instability waves in a supersonic boundary layer 
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We study the nonlinear evolution of a pair of oblique instability waves in a supersonic 
boundary layer over a flat plate in the nonlinear non-equilibrium viscous critical layer 
regime. The instability wave amplitude is governed by the same integro-differential 
equation as that derived by Goldstein & Choi (1989) in the inviscid limit and by 
Wu, Lee & Cowley (1993) with viscous effects included, but the coefficient appearing 
in this equation depends on the mean flow and linear neutral stability solution of 
the supersonic boundary layer. This coefficient is evaluated numerically for the 
Mach number range over which the (inviscid) first mode is the dominant instability. 
Numerical solutions to the amplitude equation using these values of the coefficient 
are obtained. It is found that, for insulated and cooled wall conditions and angles 
corresponding to the most rapidly growing waves, the amplitude ends in a singularity 
at a finite downstream position over the entire Mach number range regardless of 
the size of the viscous parameter. The explosive growth of the instability waves 
provides a mechanism by which the boundary layer can break down. A new feature 
of the compressible problem is the nonlinear generation of a spanwise-dependent 
mean distortion of the temperature along with that of the velocity found in the 
incompressible case. 

1. Introduction 
The transition from laminar to turbulent flow in boundary layers has long been of 

great interest and significant progress has been made over the years toward developing 
an understanding of this process in incompressible flows. The corresponding problem 
at supersonic speeds is less well understood but recent technological applications have 
generated a renewed interest in these flows. In incompressible and subsonic com- 
pressible flows two-dimensional disturbances are generally the most rapidly growing 
linear disturbances and they tend to dominate the linear stage of the process. Three- 
dimensional effects usually develop further downstream in the form of a harmonic or 
subharmonic resonance involving the fundamental two-dimensional disturbance and 
a pair of oblique (three-dimensional) waves. Rapid growth of the three-dimensional 
component leads fairly quickly to transition to a turbulent boundary layer. In con- 
trast, for moderately supersonic flows, where the so-called first mode is dominant 
(Mack 1984, 1987), oblique (three-dimensional) waves are the most rapidly growing 
in the initial linear stage. It is quite likely then that the onset of nonlinearity in these 
flows involves the interaction of oblique instability waves. 

Transition is often studied experimentally, and, increasingly, by numerical sim- 
ulation, by introducing controlled small-amplitude disturbances into the boundary 
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layer and following the subsequent downstream evolution of the flow. For sufficiently 
small-amplitude excitation the initial instability wave growth has been established 
as being well described by linear stability theory. The slow viscous spreading of 
the mean flow causes the local instability wave growth rate to decrease while the 
wave continues to amplify downstream. Under these circumstances nonlinear effects 
will first appear in the thin critical layer surrounding the position where the mean 
velocity is equal to the neutral phase speed once the local growth rate becomes 
sufficiently small. The amplitude will still be relatively small at the onset of non- 
linearity in this scenario which is consistent with the observations of experiments 
and numerical simulations. The unsteady flow outside the critical layer remains 
essentially linear but the instability wave growth is completely determined by the 
nonlinear flow in the critical layer. Nonlinear critical layer analyses have been 
carried out to describe the nonlinear evolution of initially linear instability waves 
in a variety of shear flows. For a review and further development of the works 
concerned specifically with the interaction of oblique waves see Goldstein (1994 

The first nonlinear critical layer analysis for a pair of oblique waves was carried 
out by Goldstein & Choi (1989, referred to herein as GC) for Rayleigh waves 
in an incompressible shear layer. They showed that nonlinear effects first appear 
when the growth rate becomes of the order where € 4 1  is the characteristic 
instability wave amplitude in the nonlinear region. Their analysis showed that the 
instability wave amplitude is governed by a nonlinear integro-differential equation of 
the type first obtained by Hickernell (1984) for Rossby waves. Numerical solutions 
to the inviscid equation showed that the amplitude develops a singularity at a finite 
downstream distance and an asymptotic solution valid near the singularity was 
obtained. This explosive growth of the instability wave amplitude, if not suppressed 
by some additional effect, could result in a rapid breakdown of the laminar flow. 
They also showed that, as a consequence of the nonlinear interactions in the critical 
layer, a spanwise-dependent mean distortion of streamwise velocity is generated in 
the outer region at the same order as the primary disturbance. Wu, Lee & Cowley 
(1993) (hereafter referred to as WLC) extended the analysis of GC to include viscous 
effects within the critical layer in the context of an unsteady Stokes layer. They found 
that, for certain combinations of parameters, viscous effects eliminate the singularity 
and cause an exponential decay of the amplitude. 

Unlike the subsonic case there are relatively few experimental studies of the 
transition process in supersonic boundary layers. Those that have been con- 
ducted were concerned mainly with the initial linear instability and with com- 
paring their observations with the results of linear theory. Among the first ex- 
periments to examine the linear stability of supersonic flat plate boundary layers 
were those of Demetriades (1960) and Laufer & Vrebalovich (1960) who detected 
growing wave-like disturbances within the boundary layer and determined the up- 
per and lower instability boundaries. Laufer & Vrebalovich (1960) further made 
quantitative comparisons with the early theoretical work of Lees & Lin (1946), 
Lees (1947) and Dunn & Lin (1955) and found reasonably good agreement at the 
relatively low supersonic Mach numbers considered. More recent experiments 
by Lysenko & Maslov (1984) and Kosinov, Maslov & Shevelkov (1990) have verified 
other features predicted by linear theory, for example the effect of wall cooling and 
the importance of oblique waves. Data from these later experiments have mostly been 
compared with the numerical solutions of the linear compressible stability equations 
obtained by Mack (1984, 1987). 

a, b). 
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Much of the information available concerning subsequent nonlinear stages in the 
supersonic transition process has come from numerical simulations. The simulations 
of Bestek, Thumm & Fasel (1992) and Ng & Zang (1993) suggest that the subhar- 
monic resonance or secondary instability mechanisms that operate in subsonic flows 
are significantly weaker in the supersonic case where a much larger-amplitude primary 
disturbance is needed to effect the growth of secondary disturbances. Considering the 
dominance of oblique first mode waves, and in view of the possibility of explosive 
growth predicted by the nonlinear analyses of GC and WLC, it might be expected 
that the interaction of a pair of oblique instability waves provides a stronger mecha- 
nism by which moderately supersonic boundary layers can break down. A numerical 
simulation of the spatial evolution of a supersonic boundary layer subject to an 
initially small-amplitude pair of oblique waves with equal streamwise wavenumber 
and frequency and equal but opposite spanwise wavenumbers has recently been car- 
ried out by Bestek et al. (1992) using the full compressible Navier-Stokes equations. 
Chang & Malik (1992) carried out calculations for this problem using a parabolized 
approximation to the governing equations. 

In this paper we consider the nonlinear critical layer interaction of a pair of oblique 
instability waves in a supersonic boundary layer. We will consider only the inviscid 
first mode instability so that, based on the linear stability results presented by Mack 
(1984, 1987), our results can be expected to apply for Mach numbers greater than 
about 2.5. It was also shown by Mack (1984) that the supersonic boundary layer 
can support additional inviscid instability modes for Mach numbers beyond about 3. 
Among these the second mode has a larger linear growth rate than the first mode 
for Mach numbers greater than about 4. The second mode is most rapidly growing 
as a two-dimensional wave so that its nonlinear evolution would be described by an 
analysis of the type carried out by Goldstein & Leib (1989) and Leib (1991) for a 
single wave in a supersonic flow rather than the oblique mode interaction considered 
here. However, in supersonic wind tunnel experiments the second mode is often not 
observed until the Mach number exceeds about 6 (Kendall 1975). It was pointed out 
by Reshotko (1969) that the second mode appears at very high frequency in such 
experiments and it has been suggested that its absence may be due to a lack of energy 
in the background disturbance environment at these very high frequencies (see also 
Mack 1975). Moreover, as far as the initiation of nonlinear effects is concerned, it is 
the integrated linear growth over many streamwise wavelengths that is relevant and 
in this sense the first mode dominates the second for Mach numbers up to about 6 
or 7 (Malik 1989; Balakumar & Malik 1992). In practice then, the first mode oblique 
wave interaction provides a possible mechanism by which a supersonic boundary 
layer can break down for Mach numbers up to at least 6. 

Compressibility effects do not alter the nonlinear terms in the critical layer equations 
which contribute to the velocity jump so that the kernel function appearing in the 
amplitude equation is the same as that given by GC and WLC. Additional linear 
terms appear due to non-zero temperature variations and these affect the coefficients 
appearing in the amplitude equation which determine the ultimate form of the 
solution. The evaluation of these coefficients for the supersonic boundary layer case 
is one of the main purposes of this paper. It is found that, for angles corresponding 
to the most rapidly growing waves, the values of these coefficients are such that 
the singularity in the instability wave amplitude cannot be eliminated by viscous 
effects no matter how large. A new feature of the compressible problem is the 
generation of a spanwise-dependent mean temperature distortion at the order of the 
primary disturbance in addition to that in the streamwise velocity. We will present 
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some detailed results for the mean distortion component which have not been given 
elsewhere. The results of recent numerical simulations of supersonic boundary layer 
stability by Erlebacher & Hussaini (1990) and Bestek et al. (1992) are consistent with 
the predictions of the critical layer theory. 

In $2 we formulate the problem and present the solution in the region outside the 
critical layer. The equations governing the spanwise-dependent mean component are 
also given. The flow in the critical layer is considered in $3. Matching the velocity 
jumps from the critical layer and outer solutions yields the amplitude evolution 
equation which is discussed in $4. Numerical results are presented in $5 and a 
discussion of these and the analysis as applied to a supersonic boundary layer is 
contained in $6. 

2. Formulation and outer solution 
Consider the flow of an ideal gas over a flat plate with uniform free stream tem- 

perature T, and velocity U,. The streamwise, transverse and spanwise coordinates, 
made dimensionless with the boundary layer thickness 6, are denoted by x,y and z, 
respectively, the corresponding velocity components are u,v and w,  referred to the 
free stream velocity, and the time, normalized with 6/U,, is t. We will denote the 
pressure, temperature, viscosity and density by p ,  T, p and p ,  respectively, using their 
values in the free stream as reference quantities. We define the free stream Mach 
number as 

M = ~ m / c , ,  (2.1) 

R = U,6/V,, (2.2) 

c, = (y%T,)l’*, (2.3) 

and the Reynolds number as 

where 

and v, are the speed of sound and kinematic viscosity in the free stream respectively, 
y is the isentropic exponent of the gas and % is the gas constant. The local Prandtl 
number (assumed to be constant) is defined as 

Co = P C p / K ,  (2.4) 

where cp and K are the normalized specific heat, and thermal conductivity, respectively. 
The governing momentum, continuity and energy equations, in terms of these 

normalized variables, are 

(2.5) 
l a p  i a  

- + -- (2p (eij - : A S i , ) } ,  i = 1,2,3, 
D Ui 
Dt p y ~ 2  axi P R  ax, 

and 
DT ~ - 1 D p  - M2(y- l )  

P D t - g - -  Dt R 
where, in these equations, 
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~a a 
Dt at lax,' 

1 au, au, 

- _ -  - +u.- 

eij = 2 (w + ax,> , (2.10) 

A = e. .  11,  (2.11) 
dij is the Kronecker delta, @" is the viscous dissipation function and repeated indices 
imply summation. 

The Prandtl number 00 is a true parameter of the problem and cannot be scaled 
out of the governing equations. In this paper we will set GO = 1. This results in 
a significant reduction in the still formidable algebra that must be carried out and 
serves as a rough approximation to the value for air of 0.72. We suppose that the 
normalized viscosity depends only on the temperature T and carry a general viscosity 
law p = p ( T )  through the analysis, considering a specific form when numerical 
calculations are carried out. 

Our interest is in the spatial development of a pair of oblique (with respect to 
the free stream direction) instability waves with equal amplitude, frequency and 
streamwise wavenumber and equal but opposite spanwise wavenumbers. The pair 
thus forms a standing wave in the spanwise direction that propagates and grows in 
the streamwise direction. In order to analyse the situation usually encountered in 
experiments and numerical simulations, we suppose that the disturbance originates 
from a low-amplitude time-harmonic excitation at a frequency, say w, near the peak 
in the linear growth rate curve. The normalized frequency, or Strouhal number, is 
defined as 

(2.12) 
0 6  SE-.  
u* 

Downstream of the excitation the disturbance will grow according to linear theory. 
The slow viscous spreading of the mean flow causes the local normalized frequency 
and spanwise wavenumber of the disturbance to increase as it propagates down- 
stream. This results in a reduction of the local growth rate while the normalized 
streamwise wavenumber adjusts itself so that the obliqueness angle remains essen- 
tially constant. Once mean flow spreading has driven the disturbance close enough to 
its neutral stability point nonlinear effects will become important within the critical 
layer while the local amplitude is still relatively small. The linear neutral Strouhal 
number, streamwise wavenumber and spanwise wavenumber of the instability waves 
are denoted by SO, CI and -kp, respectively. We define a2 = a2 + p2 and denote 
by 8 = tan-'p/a the angle the instability wave makes with the streamwise direc- 
tion. 

As in GC and WLC nonlinear effects first become important in the critical layer 
when the local Strouhal number S differs from the linear neutral value by an amount 
of order d3, where E Q 1 is the order of magnitude of the disturbance amplitude, so 
that 

s = so + e1l3s1, (2.13) 
where S1 < 0 is an order-one constant. The spatial growth of the instability wave 
then occurs over the long lengthscale 

x1 = d 3 X .  (2.14) 

We fix the origin of the x , y , z  coordinate system on the surface of the plate at the 
streamwise position where nonlinear effects first become important. 
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In order for viscous effects to influence the nonlinear development of the disturbance 
at leading order we take the scaled viscous parameter 

1 

(2.15) 

to be order one. 

2.1. The solution outside the critical layer 
The flow outside the critical layer is, to the order of accuracy required here, linear 
in the amplitude of the oblique instability waves and consists of a mean flow that 
develops on a long (compared with the wavelength) streamwise lengthscale, the near 
neutral linear disturbances and additional terms which are generated by nonlinear 
effects within the critical layer. 

It is convenient to work in a coordinate moving with the neutral phase speed 
u c  = Sola, 

(2.16) < = x - U J .  
The mean flow develops on the viscous lengthscale 

~2 = x / R  = E ~ / ~ A x ~ ,  (2.17) 

which is much longer than that over which the near neutral instability waves evolve. 
It will therefore be sufficient to use the mean flow at the beginning of the nonlinear 
region, considered as a strictly parallel flow, in this analysis. We denote the mean 
velocity and temperature profiles at the origin of our streamwise coordinate, x = 0, 
by U ( y )  + Uc and TO, respectively. 

The solution outside the critical layer expands like 

u = U ( y )  + e2/3al(y)xl + €Re (sec 8F(y)At(x,)eiOLr cospz + Fio)(y)Bt(xl) cos 2pz) 

+e4l3u2 + . . . , (2.18) 

(2.19) 

(2.20) 

v = --E. [Re {i&@(y)At(xl)eiai cos p z }  + a2(y)] + e4/3u2 + . . * , 
w = -€Re { i sin 8Y (y)At(xl)eiOLi sin pz} + c4l3w2 + . . . , 

T = To(y)  + ~ ~ / ~ a 3 ( y ) x 1  + €Re @(y)At(xl)eiai cos pz + Gy'(y)Bt(xl) cos 2pz) 

(2.21) 
{ 

+ c 4 / 3 ~ 2 + . - ,  

p = 1 + q M 2  cos 8Re { ZI(y)At(x1)eiOLi cos p z }  + ~ ~ / ~ p ~  + c5/3p3 + . . . , (2.22) 

where [ = 5 - S l ~ ' / ~ t / a  and Re denotes the real part. 
The spanwise dependent mean flow distortion term which appears at the same 

order as the primary instability in (2.18) must be included in the outer expansion to 
achieve a match with the nonlinear flow in the critical layer as first pointed out by 
GC. The appearance of this term, as explained by WLC and Goldstein (1994 a, b), is 
due to the fact that the leading-order fundamental streamwise and spanwise velocities 
in (2.18) and (2.20) are algebraically singular at the critical level. This causes the 
leading-order disturbance velocities in the critical layer to be asymptotically larger 
than those in the outer region. Nonlinear interactions within the critical layer are 
then able to produce terms at the same order as the leading terms in the outer region. 
The amplitude of the mean flow distortion Bt(x1) is obtained by matching with the 
critical layer solution and we note that this requires a jump in Fie' across this layer. 
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In the compressible case considered herein the leading-order fundamental disturbance 
temperature is also singular at the critical level (Reshotko 1960; Lees & Reshotko 
1962) and nonlinear interactions in the critical layer induce a spanwise-dependent 
mean temperature distortion at order E in the same way as for the streamwise velocity. 
Matching with the critical layer solution similarly requires a jump in GY) across the 
critical layer. Additional mean flow distortion terms and higher harmonics generated 
by critical layer nonlinearity are of higher order in the outer region. 

The functions al(y),a2(y) and a3(y) account for the viscous spreading of the mean 
flow and can be determined by the boundary layer equations but their explicit 
evaluation is not required to obtain the results of interest here. 

The primary goal of the analysis is to determine the amplitude At as a function of 
the long streamwise variable xl. Since we are interested in the case where nonlinear 
effects arise due to continued downstream growth of an initially linear disturbance 
we will require that 

At + ate-SlU$Xl/2 as x1 + -00, (2.23) 
where at is a complex constant, -SlULReii-/2 is the scaled linear growth rate, the 
prime denotes differentiation with respect to y and the subscript c indicates the 
function value at the critical point. 

For the linear instability of compressible shear flows it is convenient to work 
with the pressure as the primary dependent variable and obtain the remaining flow 
variables in their turn. Substituting (2.16)-(2.22) into the governing equations (2.5)- 
(2.11) and further expanding the primary fundamental linear disturbance quantities 
about their neutral eigensolutions as 

n ( y )  = n l ( y )  + ~ ' / ~ n ~ ( y )  +.  . . , (2.24) 

shows that the function nl(y)  satisfies 

Ln l  =o,  (2.25) 

where 

(2.26) 

is the linear compressible Rayleigh operator, subject to the boundary conditions 

nl - a exp(-E(l - (1 - U,)2M2 cos2 %)'I2y) as y + co, (2.27) 

and 
n; = O  a t y = 0 ,  (2.28) 

where a is an arbitrary constant. 
The Rayleigh problem (2.25)-(2.28) in general requires a numerical solution. How- 

ever, for purposes of calculating the velocity jump across the critical layer, it is 
sufficient to obtain the solution in the vicinity of the critical point y, where U(yc) = 0. 
In this paper we restrict our attention to the first mode waves classified by Lees & 
Lin (1946) as 'subsonic' because they have phase speeds relative to the free stream 
less than the local speed of sound. These modes are exponentially decaying in the free 
stream and have their critical point coincident with a mean flow generalized inflection 
point i.e. Ul/UL = Ti/T,. Letting q = y - y, two linearly independent solutions 
to (2.25)-(2.26) near q = 0 can be obtained in a standard way by the method of 
Frobenius as 

(2.29) fi(1) = 1 - 1 $ q 2  2 + a4q4 + . . . 
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as 1 -+ 0 where 

The general solution to (2.25)-(2.28) can then be written as 

(2.32) 

where bl is a constant determined by the boundary conditions. Having the solution for 
the pressure we can substitute it into the momentum and energy equations to obtain 
the leading-order solutions for the disturbance velocity components and temperature 
near the critical level as 

(2.33) 

@1 -+ l - b l v + . . . ,  (2.34) 

? + " ' ,  

(2.35) 

2 1 T,'U; 1 T," 
6 U; +-7--- 2 TcU, 2 T, 

and 

ol+- ',' [' - -  { b l - - + - L  T," ""}] + (y - 1)M2UL cos O + . . . , (2.36) 
u;cose T,' 2 U; 

as q -+ 0'. 

an inhomogeneous Rayleigh equation whose general solution can be written as 
The correction to the linear neutral eigensolution for the pressure is governed by 

where 

b& and c ~ , ~  are constants, and and nP,2 are particular solutions of 

(2.38) 

(2.39) 

(2.40) 
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and 

(2.41) 

subject to the same boundary conditions as those imposed on nl. The general 
solutions to the inhomogeneous Rayleigh problems (2.40) and (2.41) can be obtained 
by using the neutral eigensolution and the method of variation of parameters as 

(2.42) 

f i p , 2  .+ c ~ , ~  - $ (1 + ~ ~ , ~ a ~ )  q2 + :a2 ( b+ 2,2 + 2 2 u L ) v 3 + - . ,  (2.43) 

as q 3 O', where qL  and c3 are constants with the same values above and below the 
critical layer whose explicit evaluation is not needed to determine the velocity jump 
across the critical layer. The latter is obtained from the behaviour near the critical 
level of the correction to the neutral solution for the streamwise velocity which can 
be written as 

as q 3 0'. The functions eo,el and e2 depend only on the slow variable x1 and are 
continuous across the critical layer. 

Expressions for the jumps b t l  - b;, and b i 2  - bi2 can be obtained from the first- 
and second-order problems for the disturbance pressure as follows. The homogeneous 
Rayleigh equation can be written as 

n, =o. (2.45) -dy U 2  dy 

It follows from this and (2.38)-(2.41) that 

d n, LfiP,J - fip,, Ln, = - 
dY 

E 2  M 2  cos2 8 [ Fn;n, + U 

and 

d To 
dy U 2  

n, Lfip ,2  - i i p , 2  Ln, = - [ - (nliilpz - fip,2n;)] 

(2.47) 

Terms more singular than l /q at the critical level are then eliminated from the right- 
hand sides of (2.46) and (2.47) (either by using (2.45) or by subtracting terms with the 
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appropriate singularities) and the result integrated across the boundary layer, with 
the critical layer eacluded. After using (2.29)-(2.32), (2.42) and (2.43) the expressions 
for the jumps are obtained as 

and 
TO 00 

bi2  - b2,2 = $f { M2 sin2 On: + dy, 
a 0  

(2.49) 

where f denotes the Cauchy principal value integral. 
It follows from (2.18) and (2.21) that spanwise-dependent mean components must 

be included in the expansions for the transverse and spanwise velocities at order e413 
and for the pressure at order e513 namely, 

v2 = Re@r’(y)Bi, cos 282 + . . . , (2.50) 

w2 = ReYf)(y)Bil sin 2Pz + . . . , (2.51) 
and 

p3 = Renr)(y)Bl,,, cos 2pz + . . . . (2.52) 
Substituting these into the linearized compressible flow equations shows that the mean 
streamwise velocity and temperatufe distortions are given by 

and 

(2.53) 

(2.54) 

respectively, where @y’(y) satisfies the ‘steady’ compressible Rayleigh equation in 
terms of the transverse velocity 

and must match with the critical layer solution as well as satisfy the boundary 
conditions 

~ f )  - as y + co, (2.56) 
and 

C D ~ )  = o at y = 0. (2.57) 

3. The critical layer 
The nonlinear non-equilibrium critical layer has thickness of the order of the 

instability wave growth and so the appropriate scaled transverse coordinate within 
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y = -  = 0(1), E 1 / 3  

349 

this inner region is 

(3.1) 
Y - Yc 

and the inner limit of the outer solution (which is given in Appendix A) suggests that 
the flow in the critical layer expands as 

u = E'/~u;Y + d3i i1  + €ii2 + e4l3ii3 + . . . , (3.2) 

(3.3) = €fi1 + E4/302 + . . . , 

T=T,+dI3T, 'Y + E ~ I ~ T ~ + + T ~ + . . . .  (3.6) 

The expansion for the viscosity within the critical layer can be obtained from (3.6) 
by Taylor expansion to find 

where the primes on pc denote derivatives with respect to T .  

layer are 
To the required order of approximation, the momentum equations in the critical 

where 

and in these variables 
= (u, v, w} , (3.9) 

(3.10) 
- a +&I3 kU+ U J G  - --z +E-'l3v- a + w-. a 

a s1 '1  a Y  aZ --- 
Dt ag 

The energy equation is 

- ' - T 2  + l ~ ' / ~ ( y  - 1)M2pT 
D T  

Dt Y Dt 
(3.11) 

and the continuity equation is 

For the purpose of calculating the velocity jump it is convenient to use the spanwise 
vorticity 

Q=v[-uy 

= -ul, - €'/3iilY - 2 / 3 i i z y  + E (El[ - ii3y) + . . . , (3.13) 
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as a dependent variable in the critical layer which, to the required order of approxi- 
mation, satisfies 

Substituting the critical layer expansions (3.2)-(3.7) and (3.13) into (3.8)-(3.12) and 

(3.15) 

(3.14) and equating the lowest-order terms shows that 

El = -B cos PzRe iAteiac + u2c, 

cos 8 cos pzReAteiai, P1 = ___ 
- y M 2 q  

TC 
9 i i l  = BU; sin2 8 cos PzRe iAteiEi + 

(3.16) 

(3.17) 

9 G l  = PU; cos 8 sin pzReAteiai, (3.18) 

9 T l  = BT,' cos PzRe iAteiai + 71, 

where 
(3.19) 

(3.20) 

a2, is the value at the critical level of the function a2 arising from the slowly varying 
mean flow and $1 and 71 are constants given in Appendix B. The leading-order 
disturbance terms in the expansions (3.2)-(3.7) therefore can be seen to have only 
fundamental and mean flow components. 

At the next order we have 

T,' 
YM2 

-5%~ = -51ii1yy + (iilG1, - i i~ -Gl )y  + U; (G2z - Y i i l y x , )  + + 4 2 2 ,  (3.21) 

and 

- 2iac2,2 "} eiUi, (3.24) 
dXl  

p2 = yM2cos8-cosPzRe Ul. 
T, 

where 4 2 2 ,  W2 and Y 2  are viscous terms given in Appendix B which do not contribute 
to the solutions of the harmonic components of interest. 

The velocity jump across the critical layer can be obtained by integrating the O ( E )  
term in the expansion for the spanwise vorticity (3.13). The relevant vorticity equation 
can be written as 
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- & ) A t +  Uc- eial, (3.25) "'1 dx1 

where we have put 

43 is a constant given in Appendix B and we have written only the terms that 
contribute to the jump in the fundamental component of the streamwise velocity. 

It is seen from (3.15)-(3.24) that the nonlinear interaction of the lowest-order 
fundamental solutions will produce first harmonics and mean flow distortion terms 
at this order so that the solutions will be of the form 

ii2y = UTY2 - h2x1 + Re oft) + Re oft)e2iai + cospz Re or:)eial 

+ cos 2pz Re oft) + cos 2pz Re of+)e2ial, (3.29) 

+ sin 2pz Re I%?) + sin 2pz Re I%y)e2iar, (3.30) 

and 
T 2 - - 1 T, 111 Y + ~ Y x l  + Re Fy) + Re Tp)e2iar + cospz Re T.'?')eiai 

+ cos 2pz Re + cos 2pz Re Fi2,2)e2iai, (3.31) 

where h2 and 72 are constants that can be obtained by solving for the corresponding 
mean components and matching with the outer solution. For purposes of computing 
the fundamental velocity jump across the critical layer from the next-order solution 
only the (0,O) and (0,2) components of (3.29)-(3.31) need to be obtained and GC 
further showed that only the complex conjugates of these produce terms that make 
non-zero contributions to the jump. The relevant solutions for the streamwise and 
spanwise velocities in the viscous case are given by WLC. The spanwise-dependent 
mean component is responsible for the corresponding component in the outer 
region due to the fact that it approaches (different) finite values at the upper and 
lower edges of the critical layer (GC; WLC). Nonlinear interactions of the lowest- 
order fundamental solutions in the energy equation (3.23) produce mean distortion 
components of the temperature and it can be shown that 

as Y + +co where we have introduced the normalized variables 

(3.33) 
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(3.34) 

Thus nonlinear critical layer effects induce a spanwise-dependent mean distortion of 
the temperature in the outer region at the same order as the primary disturbance in 
the compressible case. The outer expansion must therefore include a term that will 
match on to this and we have included such a term in (2.21). Upon carrying out the 
matching, and using (2.53) and (2.54), it is found that 

@(a)( 2 + y , ) = + - - -  -.nSlU,2 tan2 e sin2 8, 
a 

(3.35) 

and 

B+(Xl)  = B(X) = (X - 51) e-2x(r1-r2)3/3 lA(52)12d52d51. (3.36) 

Equation (3.35) provides the jump condition that must be satisfied by the solution 
to the steady Rayleigh equation (2.55) while (3.36) gives the streamwise evolution of 
the amplitude of the mean distortion in terms of the amplitude of the fundamental 
instability. An equation for the latter is obtained by matching the velocity jump in 
the outer solution with that calculated from the solution to (3.25). Using (3.26) the 
matching condition can be written as 

dAt 2i 
dxl a 

cos 8 [I #”)dY = 2ia (bz2 - b i z )  - - - (b& - bT1) 

The contributions to the fundamental component of &, and the velocity jump 
across the critical layer from the nonlinear terms (3.27) and (3.28) have been given by 
WLC. Here we have additional linear terms due to the mean temperature derivatives 
at the critical level. The contributions of these new terms to the velocity jump are 
easily obtained by the now standard Fourier transform method of Hickernell (1984). 

4. The amplitude equation 
Upon equating the velocity jumps from the outer linear solution (2.44) and the 

nonlinear critical layer solution the equation governing the streamwise evolution of 
the instability wave amplitude can be written as 
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and the xn are exponential functions of X,(l,[2,&,14, and 2 given in Appendix C. 
The coefficients appearing in the amplitude equation (4.1) are given as 

and 

These complex constants are fully determined by combining (4.6) and (4.7) with (2.48), 
(2.49) and the neutral solution to (2.25)-(2.28). They depend upon the particular mean 
flow under consideration and the values of the relevant physical parameters. 

As shown by GC and WLC the solution to the amplitude equation (4.1) can be 
completely characterized by the three real parameters arg (il/y), 2 = J/il; and 8, 
where the subscript r refers to the real part of a complex quantity, upon introducing 
the normalized variables 

and 

so that (4.1) becomes 
A = ilr% - no, (4.9) 

when the coordinate shifts are appropriately chosen. 
We further introduce 

(4.12) 

so that in terms of these normalized variables the amplitude of the spanwise-dependent 
mean flow distortion is 

= [l [:(A - tl) e-2X(h-W3/3 lA (̂52)I2d52d51. (4.13) 

The general character of the solutions to (4.10) and (4.11) is now well known. In 
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the inviscid limit GC showed that the solutions always end in a singularity at a finite 
downstream position and gave the asymptotic form for the singularity. The viscous 
solutions, as obtained by WLC, either end in the same singularity or ultimately exhibit 
exponential decay depending on the values of arg (ii-/?), 0 and 2. The ultimate form 
of the viscous solutions is suggested by the limiting form of the amplitude equation 
for large 2 derived by WLC which, in our notation, can be written as 

where 

and 

(4.14) 

(4.15) 

(4.16) 

The analytical solution to this equation obtained by WLC similarly becomes singular 
or decays exponentially depending on the sign of gr .  In particular if gr < 0 the 
solution becomes singular while for gr > 0 the solution decays exponentially. It might 
be expected then, as suggested by WLC, that the singularity in the inviscid solutions 
to (4.10) could be eliminated for sufficiently large (but finite) values of the viscous 
parameter 2 when gr > 0. To confirm this numerical solutions for (4.10) and (4.11) 
must be obtained. In the next section we present numerical results for the coefficients 
and the amplitude equation for the first mode instability in a supersonic boundary 
layer. 

5. Numerical results 
5.1. Linear calculations for the coeficients 

Values for the coefficient arg (R/?) appearing in the scaled amplitude equation (4.10) 
can be obtained from (4.6), (4.7), (2.48), (2.49), and the neutral solution to (2.25)-(2.28). 
We have computed results for Mach numbers between 2 and 6 for a number of wall 
heat transfer conditions and obliqueness angles. Mean velocity profiles were obtained 
by numerical solution of the steady two-dimensional boundary layer equations in the 
form 

u + uc = Tof’(jj), (5.1) 

jj = x-’/*y, (5.2) 

where 

and f satisfies 

with 

f ’ + 1  a s j j - + o o ;  f = f ’ = O a t Y = O .  (5.4) 
The Sutherland viscosity law 

,312 
10’ 

p=-  f + To 
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FIGURE 1. Plot of arg (ill?) us. Mach number for an insulated wall 
at various obliqueness angles. 

is used to relate the viscosity to the temperature and the Crocco-Bussman relation 
gives the latter as 

TO = t b  + (1 - tb)(U + uc) + i ( y  - 1)M2(tb + u + uc) (1  - u - uc), (5.6) 

where tb  is related to the wall temperature. The insulated wall case corresponds to 
t b  = 1 and a cooled wall to tb < 1. 

Figure 1 shows arg (it/?) us. Mach number for an insulated wall and various 
obliqueness angles. Over this Mach number range the most rapidly growing first 
mode waves have 50" < 8 < 70" (Mack 1984). For these angles the results in figure 
1, along with (4.16), show that, over the entire Mach number range for which the 
theory is expected to apply, the coefficient falls within the range where the viscous 
limit equation derived by WLC develops a singularity. The results show that arg (it/?) 
decreases away from n/2  as the Mach number increases until it appears to become 
independent of M beyond about 6 for the most rapidly growing waves. It is also seen 
that smaller obliqueness angles correspond to values of arg (it/?) closer to n/2. 

In figure 2 the effect of wall cooling on arg (it/?) for 8 = 60" is shown over the 
same Mach number range. It shows that, for a fixed wave angle, wall cooling causes 
arg (it/?) to move closer to n/2 relative to the insulated case. For the more highly 
cooled cases arg (it/?) begins to move fairly quickly toward n/2 as the Mach number 
decreases from 6 but before it can reach there the generalized inflection point vanishes 
and the first mode instability no longer exists. 

It was shown by GC that when 8 = 45" the nonlinear term vanishes in the inviscid 
limit while WLC showed that the same is true for their viscous limit equation. It 
is only for finite values of 1 that the nonlinear term is non-zero when 8 = 45". 
Furthermore, (4.16) shows that gl changes sign as 8 goes through 45", provided 
that Re (it/?) does not also change sign. This angle therefore serves as a sort of 
demarcation between the singular and decaying solutions - at least in the highly 
viscous limit. 
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FIGURE 2. Plot of arg (it/?) us. Mach number for 6' = 60" and various amounts of wall cooling. 

We have found no cases for the first mode instability where Sr > 0 for angles 
corresponding to the most rapidly growing waves. However, as pointed out by WLC, 
since the coefficient g in their viscous limit equation depends on 8, it is always possible 
to find some angle for which its solution exhibits exponential decay. Returning to 
figure 1 it is seen that, for example, waves at 8 = 30" will decay in this limit. In fact 
these results, along with (4.16), suggest that all first mode waves with 8 < 45" will 
decay in the viscous limit, although these are not the most rapidly growing waves 
(Mack 1984). 

The results from the linear neutral slability calculations presented above, together 
with the solution to the viscous limit equation of WLC, suggest that in the case of a 
supersonic boundary layer oblique wave critical layer interaction augments the growth 
of the most rapidly growing modes and can suppress (for large enough viscosity) the 
much more slowly growing waves with smaller obliqueness angles. Numerical solutions 
for the amplitude equation are needed to confirm these conjectures and we present 
these in the next subsection. 

5.2. Numerical solution of the amplitude equation 
Numerical solutions to the amplitude equation were obtained using the computed 
values for the coefficients presented above. The computer code was adapted from 
that used by Goldstein & Lee (1992) in their resonant triad analysis. The solution 
is advanced downstream from the prescribed linear solution by a variable (up to 
twelfth)-order Adams-Moulton method. Integrals are computed using the (up to 
eleventh-order) Newton-Cotes formula. 

Solutions for the inviscid case (2 = 0) are shown in figures 3-5. They all end 
in a singularity whose form was first given by GC and the results show how the 
singularity position, which can only be found by numerical solution of (4.10), is 
affected by the physical parameters. In figure 3 the inviscid amplitude evolution is 
shown for an insulated wall with 8 = 60" at three Mach numbers. The curves show 
that increasing the Mach number causes the singularity position to move upstream 
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FIGURE 3. Inviscid solution for amplitude us. streamwise position for an insulated wall with 
0 = 60" at three different Mach numbers: (a) normalized variables and (b )  physical variables. 

in the normalized variables. Part (b )  of this figure shows that the results look quite 
different when plotted in the original physical variables (i.e. those appearing in the 
expansions (2.18)-(2.22) before the various normalizations are introduced). The larger 
linear growth rate at lower Mach numbers, which is scaled out of the results in figure 
3(a), causes the singularity to appear further upstream when the disturbances are 
initiated at equal amplitude in the linear region. The effect of wall cooling on the 
singularity is shown in figure 4 for M = 4 and 8 = 60". It is seen that cooling the wall 
delays the appearance of the singularity relative to the insulated case by decreasing 
the linear growth rate. The singularity position in normalized variables in the inviscid 
case appears to be most sensitive to the wave angle as figure 5 shows. This may be 
because the kernel function itself, as well as the coefficient in (4.10), depends upon 
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FIGURE 4. Inviscid solution for amplitude us. streamwise position at M = 4 and f3 = 60" for an 
insulated and cooled wall: (a) normalized variables and (b)  physical variables. 

8. Decreasing the obliqueness angle moves the singularity position downstream in 
normalized variables but figure 5(b) shows that the position in physical variables 
moves upstream. The latter occurs because the near neutral growth rate is larger for 
the smaller obliqueness angles shown in the figure. 

None of the inviscid solutions presented above exhibit any oscillations on their 
approach to the singularity. This is because of the values of the coefficient arg (i?/g) 
found to be relevant to the supersonic boundary layer. For this flow then the periodic 
energy transfer between the disturbances and the mean flow associated with these os- 
cillations is absent. Previous weakly nonlinear critical layer calculations, such as those 
carried out by GC, Goldstein & Leib (1989), Leib (1991), Goldstein & Lee (1992) 
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FIGURE 5. Inviscid solution for amplitude us. streamwise position for an insulated wall at M = 4 
for various obliqueness angles: (a) normalized variables and (b)  physical variables. 

and WLC, have shown that in these cases the solution is well approximated by the 
local asymptotic singularity solution over most of its evolution. 

As already discussed, the values of the coefficient in (4.10) for the most rapidly 
growing first mode waves in a supersonic boundary layer are such that viscous effects 
are not expected to be able to eliminate the singularity that develops in the inviscid 
solutions just described. The results of WLC, as well as those from other weakly 
nonlinear critical layer calculations, show that in such cases viscosity can only delay 
the occurrence of the singularity. This is accomplished mainly by extending the 
distance over which the amplitude exhibits linear growth. 

Numerical solutions for the amplitude equation corresponding to M = 4,O = 60" 
and an insulated wall are shown in figure 6(a) for various values of the viscous 
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FIGURE 6. Amplitude vs. streamwise distance (normalized variables) for an insulated wall with 

M = 4 and various values of the normalized viscous parameter x :  (a) 8 = 60"; ( b )  8 = 30". 

parameter 2. The results show the expected downstream movement of the singularity 
and the increase in the linear region with increasing 1. The trends in the physical 
variables would be the same since the normalization does not depend on the viscous 
parameter. 

In figure 6(b) we show the corresponding solutions for 8 = 30". It shows that 
increasing 1 moves the singularity downstream, eventually eliminating it and causing 
the amplitude to decay as suggested by the viscous limit analogy. The decaying 
solutions reach larger amplitudes at larger values of 2 because viscous effects tend to 
keep the solution linear over a longer streamwise distance. 

The special properties of the case when 8 = 45" were discussed in the last section. 
To provide a basis for later discussion solutions to (4.10) at this wave angle are 
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FIGURE 7. Amplitude us. streamwise distance for an insulated wall with 0 = 45" and various values 

of 1: (a) M = 4, (b )  M = 6. 

shown in figure 7(a) for an insulated wall with M = 4. The results show that for 
lower values of 2 the solution is singular but when 2 becomes sufficiently large the 
amplitude appears to settle into a periodic oscillation. Figure 7(b) shows that this 
can occur at smaller values of 2 for higher Mach numbers. The development of 
periodic oscillations in the amplitude at 8 = 45" was first observed by WLC. The 
results of figure 7 however do not exhibit the 'chaotic' transient reported by them due 
to the values of the coefficients in the supersonic boundary layer case. The periodic 
behaviour of the amplitude in these cases may continue indefinitely downstream 
although the reliability of the numerical results comes into question over very long 
integration distances. 
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FIGURE 8. Normalized amplitude of the spanwise-dependent mean distortion us. st!eamwise 
distance for an insulated wall with M = 4. 0 = 60" and various values of 1. 

5.3. Calculation of spanwise-dependent mean distortion component 

A prominent feature of the nonlinear critical layer interaction of a pair of oblique 
waves is the generation of a spanwise-dependent mean distortion of the velocity 
and temperature profiles in the outer region at the same order as the fundamental 
instability. The transverse mode shapes of this component are given by (2.55)-(2.57) 
subject to (3.35) while the downstream development of its amplitude is given in terms 
of the fundamental amplitude in (3.36). 

Figure 8 shows the evolution of the mean distortion amplitude at a number of 
values of 1 for an insulated wall with M = 4 and 8 = 60". For this case the mean 
distortion amplitude becomes singular and it can be shown that it has the same 
asymptotic form near the singularity as the fundamental amplitude. In figure 9 the 
streamwise velocity and temperature distortion profiles in the outer region multiplied 
by the amplitude function at various streamwise positions are shown for 1 = 100. 
Both the streamwise velocity and temperature distortions have their peak values at 
the critical level. For y > y,' they decrease and eventually vanish far from the wall. 
Below the critical level the streamwise velocity decreases from its value at y = y;  
and approaches a non-zero value at the wall giving a distortion slip velocity which 
increases as A increases. The temperature distortion, on the other hand, goes to zero 
at the surface of the plate for insulated wall mean conditions. Figure 9 clearly shows 
the increasing 'jump' in these quantities across the critical layer with increasing A in 
this case. 

Figure 10 shows the corresponding distortion amplitude for 0 = 30". At this 
wave angle the results of figure 6(b)  showed that the fundamental amplitude decays 
exponentially due to nonlinear critical layer effects for 1 = 250 and 500. The results 
of figure 10 show that the mean distortion amplitude continues to grow in these cases. 
This behaviour was first observed by WLC who showed that the distortion amplitude 
grows linearly (i.e. as A) while the fundamental amplitude decays exponentially. 
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FIGURE 9. Profiles of the spanwise-dependent mean distortion of the (a) streamwise velocityAand (b)  
temperature at various streamwise positions for an insulated wall with M = 4, 8 = 60" and 1 = 100. 

Figure 11 shows the streamwise velocity and temperature distortion profiles for 
1 = 250. The profiles are similar to those at 6 = 60" for y > y,'. For y < y; they 
have their peak values slightly below the critical level unlike the results of figure 9. 
The distortion amplitude for 8 = 45" is shown in figure 12. Recalling the results of 
figure 7(a) we see that while the fundamental amplitude appears to have saturated, 
the distortion amplitude continues to grow. 

The development of a large mean distortion or 'streamwise vortex' component is 
a very important feature of the oblique wave critical layer interaction. It provides a 
potential mechanism for disrupting the original steady laminar flow even for cases 
when the oblique wave amplitude does not exhibit explosive growth. 
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FIGURE 10. Normalized amplitude of the spanwise-dependent mean distortion us. streamwise 
distance for an insulated wall with M = 4, 0 = 30" and various values of 1. 

6. Discussion 
In this paper we have considered the nonlinear, non-equilibrium critical layer 

interaction of a pair of oblique instability waves, first considered by GC and extended 
by WLC, in the context of the supersonic boundary layer flow over a flat plate. The 
linear stability characteristics of this flow at the moderately high Mach numbers of 
interest here, namely the preference for oblique, inviscid instability waves, make this 
the most likely setting in which such an interaction would be observed experimentally. 

The critical layer nonlinearity is generic and not dependent upon the particular 
mean flow being considered which means that the kernel function appearing in the 
integral nonlinear term is the same as that obtained by GC in the inviscid limit and 
WLC with viscous effects included in the critical layer. The external linear solution, 
as well as the linear terms in the critical layer equations, must, of course, be worked 
out for each case. These linear terms affect the coefficients in the amplitude evolution 
equation which control the ultimate behaviour of the solution. 

We have evaluated the coefficients for the supersonic boundary layer case and 
computed the corresponding solutions to the amplitude equation. The results show 
that the growth of the most rapidly growing oblique waves is enhanced by the 
nonlinear critical layer effects and that the amplitude ends in a singularity at a finite 
downstream position. This singularity, it was found, cannot be eliminated by viscous 
effects for wave angles corresponding to the most rapidly growing modes. At other 
wave angles the nonlinear effects can, given a sufficient amount of viscosity, cause 
the waves to exhibit exponential decay. This suggests that attempts to force waves at 
these angles (say, by giving them a larger initial amplitude) could actually be futile 
since they would be nonlinearly suppressed if the Reynolds number were not large 
enough. 

The appearance of a singularity in the amplitude of course implies that the asymp- 
totic expansions used here break down and that the problem must be rescaled in order 
to continue to follow the downstream evolution of the flow. From the asymptotic 
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FIGURE 11. Profiles of the spanwise-dependent mean distortion of the (a) streamwise velocity and (b)  
temperature at various streamwise positions for an insulated wall with M = 4, 0 = 30" and = 250. 

solution near the singularity GC showed that the next stage of evolution is governed 
by the full three-dimensional Euler equations in this case. Even for the case where the 
fundamental disturbance amplitude decays exponetially due to nonlinear critical layer 
effects the continued growth of the spanwise-dependent mean component amplitude 
results in a breakdown of the flow structure. In this case the next stage is governed 
by the linearized Navier-Stokes equations (Goldstein 1994~) .  

The relatively large mean flow distortions produced by the oblique mode critical 
layer interaction led WLC to seek a connection between the nonlinear critical layer 
theory and the vortex/wave interaction theory of Hall & Smith (1991) which also 
features large mean flow changes and near neutral instability waves. A mathematical 
link between the highly viscous limit of the critical layer amplitude equation and a 
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FIGURE 12. Normalized amplitude of the spanwise-dependent mean distortion us. speamwise 
distance for an insulated wall with M = 4, 0 = 45" and various values of 1. 

certain limiting form of the weak vortex/wave interaction equation was found. More 
importantly perhaps, they showed that the nonlinear critical layer solution cannot 
provide a starting condition to initiate the vortex/wave interaction. 

It was shown by Gajjar (1993) that the evolution of a single oblique first mode wave 
in a supersonic boundary layer is governed by a pair of strongly nonlinear critical 
layer equations in the low-frequency limit. The resulting amplitude evolution is quite 
different from that obtained here. In particular the explosive growth associated with 
the development of a singularity, which we have found to be a dominant feature 
with a pair of oblique waves, does not occur in the case of a single wave. The 
ultimate form of the solution for the single wave is difficult to ascertain due to the 
difficulty of the numerical calculations but the results presented by Gajjar (1993) 
show that the initial effect of the nonlinearity is to reduce the growth rate from its 
linear value. Further downstream oscillations set in which may be due to numerical 
difficulties. 

While experimental data are lacking, very recently a number of numerical simu- 
lations have been carried out to study possible nonlinear mechanisms in supersonic 
boundary layer transition. An advantage of the simulations is that the 'background 
disturbances', in the form of initial conditions, are easily controlled so that a 'quiet' 
environment can be obtained, something which is particularly difficult to achieve in 
supersonic wind tunnels. 

Bestek et al. (1992) introduced a pair of small-amplitude oblique waves at angles 
of +45" into a supersonic boundary layer with a free stream Mach number of 1.6 
and computed the spatial evolution of the flow using the Navier-Stokes equations. 
Their results showed that, after an initial adjustment region, the oblique waves 
grow linearly throughout the calculation while a strong spanwise-dependent mean 
component develops which becomes larger than the oblique waves. The relatively low 
Mach number and Reynolds number (on the order of 1000 based on the boundary 
layer thickness) of this simulation makes it relevant for comparison with the highly 
viscous limit of the nonlinear critical layer theory. In this limit at the wave angle of 45" 
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the nonlinear term drops out of the equation for the oblique wave amplitude which 
is then purely linear while, as can be shown from (3.32) and (4.15), the spanwise- 
dependent mean component is asymptotically larger than the oblique waves (see also 
Goldstein 1994 a). These theoretical predictions of the linear growth of the oblique 
waves and relatively large spanwise dependent mean component are in agreement 
with the numerical results of Bestek et al. (1992). 

Numerical simulations for spatially evolving flow at higher Mach numbers are 
scarce due to the extensive computational resources required. Some preliminary 
calculations for the spatial evolution of a single wave in a M = 4.5 boundary layer 
were made by Masetrello, Bayliss & Krishnan (1989). Most of the simulations that 
have been carried to the point of significant nonlinear interactions have considered 
the temporal evolution of spatially periodic flows. Erlebacher & Hussaini (1990) 
considered the temporal evolution of a triad consisting of two oblique waves and a 
two-dimensional wave to study a possible secondary instability route to transition at 
Mach 4.5 and a Reynolds number based on the boundary layer thickness of lGO00. 
Our interest is in the case where they set the initial two-dimensional amplitude to 
zero. In this case Erlebacher & Hussaini (1990) obtained faster than linear growth 
for the oblique waves at 8 = 60" as well as the rapid growth of a (0,2) or streamwise 
vortex component whose amplitude eventually exceeds that of the oblique waves. 
These results are in agreement with the predictions of the critical layer theory for this 
wave angle and Mach number. 

Other temporal simulations at M = 4.5 have used the two-dimensional second 
mode wave as an initial condition either alone (Erlebacher & Hussaini 1990) or in 
combination with oblique subharmonic secondary instability modes (Dinavahi, Pruett 
& Zang 1994 ). This choice for initial conditions is motivated by the result from 
linear stability theory that the second mode is the most rapidly growing at this Mach 
number. As already discussed experimental evidence indicates that (at least for a flat 
plate boundary layer) the first mode actually dominates the transition process for 
higher Mach numbers than linear theory would suggest although this will certainly 
depend on the background disturbance environment. In any case the explosive growth 
associated with the nonlinear critical layer interaction of a pair of oblique waves, 
first predicted by the analysis of GC, clearly provides a viable route to transition in 
moderately supersonic boundary layers. It is hoped that experimental data for this 
mechanism can be obtained in the not too distant future. In the meantime further 
numerical simulations of the type referred to above with pairs of oblique waves as 
initial conditions could provide additional information as to the relative importance 
of this mechanism in supersonic boundary layer transition. 

The authors would like to thank Drs Lennart S. Hultgren and David W. Wundrow 
for helpful discussions on the linear stability of supersonic boundary layers and 
Dr Hultgren for the use of his linear stability code. This work was supported by 
the National Aeronautics and Space Administration, Lewis Research Center under 
contract number NAS3-27186. 

Appendix A. The inner limit of the outer solution 
In this appendix we present the inner limit of the outer linear solution which is 

obtained by substituting q = y - y,  = ell3 Y in the expressions for the linear solutions 
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in the vicinity of the critical point and taking the limit as e approaches zero: 
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u = ell3 UiY + e2I3 

+ -- isin20 1 ( U ,  * - is1 A') } eiai] 
~XU: Y 2  dxl 

+ e [6 1 U"' , Y 3 + a ~ , Y x l + s e c ~ c o s ~ z R e  { [sin2B(g-;$)-bl]At 

eiai +cos2Pz Re 

2 1 u; 
$z',,Y2xl +secOcospz Re { ( - z b l  - - 2 (-) u: 

1 U r  1 U: T,', 1 T:]) Y At 
a2 6 U; 2 U; Tc 2 T, 

1 ur 1 2 4a4 + - - + ? a  - _ + s i n  
3 u; 

p = 1 + yM2 cos 

1 1 T,' T = T, + c1I3 TLY + e2I3 $ T," Y + a3cx1 + - - sec 8 cos /?z Re Ateiai 
Y u; 

+ c [ iT,"'Y3 +a;,Yxl 

where fyi,fri and gyi - are constants that take on different values above and below 
the critical level. 
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Appendix B. Definition of terms appearing in the critical layer equations 

(3.19) are defined as 

and 

The constants appearing in the leading-order critical layer equations (3.17) and 

41 = u: (ilPLT,'TC - a2c) 9 (B 1) 

(B 2) 71 = -T,'a2, + il (UL2(y - 1)M2pc + pLTcT,") . 
The inhomogeneous viscous terms in equations (3.21)-(3.23) are 

The constant appearing in the critical layer vorticity equation (3.25) is given as 

Appendix C. Exponential factors in the kernel function 

function (4.2)-(4.5). 
In this appendix we define the exponential functions appearing in the viscous kernel 

x 1 ( 5 1 , 5 2 ,  5 3 , ~ )  = exp ( - 2 ( 5 2  - 5312 [(a - 5 1 )  - f ( 5 2  - td]) (C 1) 
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